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ADAPTIVE ARMA SPECTRAL ESTIMATION

James A. Cadtow & Koji Ogino
Department of Electrical Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT developed for efficiently estimating the AR model's
ak coefficients. Similarly, the periodogram and

A novel adaptive method for efficiently obtain- its variants have been found to yield effective
ing an UBMA model spectral estimate of a wide-sense 4A modeling procedures. The interested reader will
stationary time series is presented. It is adapt- find excellent treatments of these and other
ive in the sense that as a new element of the time rational spectral estimation methods in Haykin [1]
series is observed, the coefficients of a (p,p)th and Childers (2].
order RA model may be algorithmically updated.
This algorithm's computational complexity (i.e., Recently. attention has been focused on
the number of multiplications and additions developing so-called super-efficient algorithms for
required) is of the order p log(p) for a particular estimating the AR model's ak coefficients whereby
version of the method. Moreover, the spectral on the order of p log(p) computations are required
estimation performance of this new method is found for this task. These algorithms are ctypically
typically to be far superior co such contemporary predicated on the divide and conquer approach
approaches as the Box-Jenkins, maximum entropy. (e.g., see refs. [ 3]&[ 4 1). These super algori-
and, Widrow's L.MS methods. This performance in ths offer the potential of providing a significant
conjunction with its computational efficiency mark computational advantage in generating AR spectral
chis algorithm as being a primary spectral estimates when compared to other contemporary AR
estimation tool. procedures. Unfortunately, implementation of these

super algorithms is relatively complex and a rather
large value for the AR order parameter p is

Z. 114TIODUCTION required before the computational complexity
p log(p) is approached. It is felt that future

In various signal processing applications, it developments will alleviate these difficulties.
is necessary to estimate the power spectral density
o A wide-sense stationary time series xn}. Since Despite the concentrated interest given to
onlta iinite set of time series' observations are AR spectral estimation, it is widely recognized
:.micaily available for this cask. one almost that an ARMA spectral model is generally the most
ilwavs invokes a finite parameter model for the effective rational model from a parameter parsi-
goec:ral density estimate. Without doubt, the mony viewpoint. In recognition of this fact, a
rnt-ional sectral density function as specified by variety of procedures have been developed for

"qW12 generating ARMA models. These include the whiten-
. +bIa q e ing filter approach which is typically iterative

-. -7- .. (1) in nature, generally slow in convergence. and,
S-... ae usually requires an excessively large number oftime series' observations to be effective (e.g..

zonsicutes -he most widelv used of such models. see refs. [ 5] & [ 61). More desirable closed form
procedures which overcome these deficiencies have

This partizular model is generally referred to as been offered. These include the so-called
,ein4 an aucoregressive-mtoving average (AMA) model Box-Jenkins method and its variants 7 1 -[ 9 1.
o, 'rcer ip.q). and, more recencly, Cadzow has developed a "high

"is predominant effort In rational spectral performance" method (10] & [ll. Although this

estination ias een directed towards the more latter method has provided excellent spectral

pecializa autoregressive (AR) -nodel for which estimation performance when compared to the
maximum entropy and 3ox-Jenkins methods. its

nd. .*enexmpe. thoe maxm entropy, one-step :omputatlonal effLciency is somewhat inferior.A . .s exampes, the .maximum entropy, one-step

'redi,:or. ano tutoregressive nethods have been I herein Present novel lgebraic

_oprrach for generating in AILLA nodel spectral

7s ,rt vis 4,rted In part by the Office o estimate. it offers the Jual advantage f having

t," eseircn inder :-ntrac: :O0.-- O-C-i3g. i suner algorithm's computaticnal efficient' wnile
ac ": e same time maintaininea soectral estimation



capability similar to the above mentioned high corresponding to the enlarged n+1 data set
performance method. These characteristics mark (i.., x 2 .... n+L)
this algorithm as being a primary spectral estima-
tion tool. III. ARMA ESTIMATION: DIRECT APPROACH

In this paper, we shall consider exclusively
the task of estimating the ARMA model's auto- In this section, a procedure for estimating
regressive coefficients. This estimation is, to the AlMA models' autoregressive coefficients shall
a Large extent, motivated by the well-known Yule- be given. To begin this development, one first
Walker equations which will be briefly reviewed evaluates the model equation (2) over the set
in the next section. Once these aucoregressive p +2 < k < n to obtain the following time series'
coefficient estimates have been obtained, a relationships
variety of procedures exist for estimating the
ARMA model's moving-average coefficients. The x x x a
interested reader may consult references [101 &p42 1x p . . .
(11] for a description of such procedures. x3 x 2  x a

seie it petaldnst ()ca e oeldas lL n- - p.
being the response of the causal AlMA system

p-p2 p - . . .

S'k- i bi-
p.-i i-.2 .e. . 3 I 1

(6a)
to the zero mean white noise excitation Cn' whose
individual terms have variance 3Z. Although the
more general case may be straightforwardly treated, t . b
We have here restricted q - p for purposes of n n-l " n-p p
ease of understanding. The autocorrelation
characterization of this AlMA system is readily It will be convenient to represent this relation-
achieved by first multiplying each side of equation ship in the more compact vector format
(2) by he entity xn n and then taking the expect-
ed value. This results in the well known Yule-
'Walker equations as given by - 6

p where x, a, and b are n-p-l. p. and, p41 column

rX(M) + a r tm-k) -(3 for mp (3) vectors respectively, while I and are -o-i)p
k-1 and (n-p-i) (p+l) matrices, respectively. -Me

entries of these vectors and matrices are obtained
:n this equation, the symbol rx(m) denotes the by directly comparing relationships (6a) and k6b).
time series' autocorrelation sequence

.e now wish to use the Yule-Walker equations
*m) -. "x *' (4) (3) in conjunction with relationship (6) to

estimate the autoregressive coefficient vector a.
This objective is readily achieved by first intro-

where and E denote the operations of complex ducing the following (n-p-l) Lower triangular
zonjueation and expected value. respectively, type matrix

In what is to follow;, :he Yule-Walker equations 0 . . . 0
3) wiLl serve as . .notivating influence in evolv-

Lne a method for estimating the autoregressive X 2 X1
:effliients of tone AM!A model (2). These auto- . . O0
regressive coefficient estimates are to be based Y " "7)

:otmily on the following contiguous set of n time
"eries obserations

xn-p-l n-p.2 xnp-t
..... .............

.he method :o be described will be idaocive in Ile selection of the integer t. wiicn specifies
nature. ;amel*. as tne new time series element the number of columns of matrix Y , is critical.
-:,-I becomes availole. it is possible to A discussion of how one goes abuut making this
-"i..ienlr, uoa:e the ,pcimal autoregressive cm- selection will be shortly ;iven.

i,'isnts wgneraced from the n data set i4 to
otai:2 -he ipma autoregressive ;oefficlencs Upon left tultiDlying eacn side of relation-

I. \.t
... ..ai."

?-L ,- to- °:
- ~~ ~ ~ ~ ~ ~ ~ ~ 4 A lll/ llllllli



ship (6b) by the complex conjugate cranspose of the Sox-Jenkins method of autoregreatve co-
matrix (7) aa denoted by ' , there results efficient estimation C 7 1. Upon closer examination,

however. it Ls found that these two approaches are
Yx Y a - Y b ) quite different. As a matter of fact, it has been

- - b empirically found that the spectral estimation
performance which results from utilization of

This system of equations is readily found to con- relationship (11) with t - p is distinctly better
stitute a statistical approximacion to the first than that obtained with the Box-Jenkios method. [ll.
t Yule-Walker equations (i.e., expression (3) for
p < m < p+t). This is readily verified by taking If the integer t is taken to be larger than
the expected value of expression (8) which results p, then more then the minimal number (i.e., p) of
in the following sac of equations Yule-Walker equation approximations are generated.

1 .With this larger base of Yule-Walker equation
p approximations (i.e., greater than p), it might be

(n-r) x(m) - 0 for p < m<pt conjectured that an improvement in spectral esti-
be k1' mation performance would result. This anticipatedimprovement in performance has been in fact

It is to be noted that the right side zero term empirically demonstrated on numerous examples
arises due to the fact that E[Y } a 0 (i.e., the treated to date.
null matrix). This is a direct consequence of the
AMA models' causality and the whiteness of the It is readily shown that the procedure here
excitation time series which causes presented for selecting the autoregressive co-
Ein *- 0 for k > n. efficients is equivalent to Cadzow's high perform-

ance AFSA spectral estimation method [101&[ll]. As
With the above observations in mind, a logical such, a large base of empirical evidence gathered

selection procedure for the autoregressive co- in using this latter procedure suggests that the
efficient vector is suggested. Namely, the auto- spectral estimation performance of this paper's
regressive coefficient vector a is selected procedure is clearly superior to that achieved by
so as to cause the left side of relationship (8) such commonly used contemporary procedures as the
to be as close as possible to the zero vector Box-Jenkins and maximum entropy methods. The
(i.e., the expected value of the right side vector advantage accrued in algebraically formulating the
Y b ). This results in an approximation to the spectral estimation problem via relationship (8)
Yule-Walker equations which is "most" consistent (as compared to the equivalent high performance
wtih the cime series' observations (5). A parti- method) resides in the ability to directly use
cularly convenient measure of the closeness of sophisticated least mean square concepts.
7--b to the zero vector is given by the quadratic Using these concepts, it is possible to evolve a
functional computationally efficient adaptive spectral esti-

mation algorithm whose computational complexity is
(a) - (YIx 4- YXa)tW(Y'x + Yxa) (10) on the order of p

2 . More importantly, by an
appropriate modification of the vector x and
matrices X and Y used in relationship (8), it

LEI which W is a t t symmetric positive semi- is possible to obtain a truly super computational
de-finice :atrix that is usually selected so as to algorithmic procedure which has a computational
.eighr differently various elements of the error complexity of the order p log(p). It is this
'actor Y Y S§Xa. It is readily shown that the capability which distinguishes the herein presented
*Autoregresslve coefficient vector which minimizes method from the high performance method.
t.,;s quadratic functional satisfies the following
nsistent sastem of p linear equations in the

p autoregressive coefficient unknowns V. ARMA ESTLIATI N0: =0DIFED APPROACH

X-y,.;YX3 X-Y x (it is possible to realize a significant capu-
-ational improvement in the proposed spectral
estimation algorithm by restricting c to be p and

't is possible to use projection heory concepts by appropriately modifying the vector and macrix
: achieve a -omoutacionally efficient method for entrees in expression (8). Although a variety of
7bcining the optimum vector a" when the weight- such modifications are feasible, we will here
ing acrix ", is exoonentiaLly diagonal. A ,aper restrict our interests to two such posslbillties
now in *reparaticn will detail :his solucion pro- called the "premodificacion" and "postmodification"
- naure. approaches. Additional modifications are beino

examined and will be shortly reported upon.
A fey words are now aopropriate conlcerning

::1e elec:ion oif :he inteer t whicn in part (a) Preodification Mtethod
.:uracterL:es .atrix Y as 4iven by expression
, ". :f c is 4et equal :a p , it Is seen that :n :he premodification methoq. the x '-ec::r
re ' onship 7) -nstitutes A statistical and Y matrix as aiven in expressions I', and k7)
-At i-.te , .W "Irst 3 "'uLe-'malker equations, remain the same wnile the integer : is fixed at
\s sucre, .e tL.I.nshi ears . resemblance :o p. The matrix X. however, is .odified :o the

i, 7-T-- T--TT;--]-



following lover triangular format Fxi x2

.0 0 0 . . . I x1 .n-2!

0 0 0 Y--. (14c)

*'"f,"3 Xp+ 2  0 . . . 0:+ 0 0. , ,n-p
-p+2

"  
(12) L

0 where the prime denotes the transpose operator.

Using these entries in expression (8). it is possi-
* ble to evolve an adaptive algorithmic solution pro-

cedure for the optimum autoregressive coefficients.
Xn-l "n-2 x.1-p This entails utilization of the doubling algorithm

concept and results in an adaptive algorithm whose
If this matrix is substituted into relationship computational complexity is on the order of
(8), an alternate method for estimating the auto- p log(p) [13].
regressive coefficients is at hand. Due to the
lower triangular structure of both matrices X and To gauge the effectiveness of this postmodifi-
Y. however, it is possible to implement an adapt- cation method as embodied in expression (8), the
ive algorithm for obtaining such estimates with a expected value of this expression with entries (14)
computational complexity of order p. This remark- is next taken and results in
able improvement in computational efficiency is
found to be dependent on a lattice structure imple- ( ') + 0
mentation of the ARMA model (a.g., see ref. [13]). (nm)r (in) k l (nt)akrxCm-k) -0 p m _ 2p (13)

A measure of the spectral performance of this As in the premodification method, these expected
premodificatLon method may be obtained by taking value relationships do not precisely satisfy the:he expected value of expression (8) with the vlerltosied o rcsl aif h

governing Yule-Walker equations. On the other hand.
mazrix substitution. This is readily found to for n > p, it is clear that they do provide a very
Fild excellent approximation to these characteristic

T-o-I p equations. As such, it is not surprising that the
(n-ql akr m-k) + (n-p-k-l)akr (m-k) -0 (13) autoregressive coefficient estimates provided by

k;,) " k'- the postmodification method as represented by
p <m:2p expression (8) yield a very satisfactory spectral

estimation performance. This performance has been

where tno a0 coefficient is set equal to one. empirically found to approach that of the high

Altnough these relationships don't precisely satis- performance (direct) method.

fv the Yule-Walker equations as in the direct n order to test the effectiveness of the
lDproach. it is noted mt for n > p, an excoll- * herein proposed AM& spectral estimation approach,
ent inproximatLon is in fact realized. With this the classical problem of resolving two sinusoids
Ln -!inc, it is reasonable to anticipate that this embedded in additive white noise was considered.
ireodification nethod will have a spectral esti- The spectral estimates obtained from these methods
-.acion 3er:ormance approaching that of the afore- are shown in Fig. I along with the results genera-
,entioned hish nerf ar.ance (direct) method. Em- ted using the maximum entropy and Box-Jenkins
-i : nc eviuence zathered to date re-enforces this methods. It is apparent that the estimates obtain-

ad using this paper's approach were clearly super-

ior for this task.
.'s:oifi :otion lethod

.a, :ne nostmodification tetnod, the altera- V. CONCLUSION
mL.ns t, oe made are given by

A novel approach to ALMA model spectral esti-
. , : .. .. m. :. ), . . a ation has been presented. This astication

approach possesses the dual attributes of providing
an excellent spectral estimation performance, and,

Xp • n' . Q of having an exceptional computational efficiency.
Its excellent spectral estimation performance has
been demonstrated on numerous examples treated to

! -b) date and virtually always exceeds that achieved by
such contemporary procedures as the maximum entropy
and Box-Jenkins Methods.

. ............. '1 The above mentioned super computational effic-
iency was achieved by appropriately modifying some
vector and matrix entries. In particular, two such
modifications have been herein offered. Further
studies are now being conducted relative to employ-
ing the basic approach herein taken to evolve even

MEN
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better performance. These results vii be reported
in forthcoming papers.
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